

Towards the Recycling of Permanent Magnets through VALOMAG EU project

Zhijie Li (Gloria) | Leiden University 15th September, 2022

Contents

- 1. Brief introduction of rare earth elements (REE)
- 2. An overview of VALOMAG project

3. LCA in VALOMAG of primary and secondary Nd magnets

Institute of Environmental Sciences (CML)

Rare earth elements (REE)

- REE = set of 17 metallic elements including:
 - 15 lanthanides
 - Scandium and Yttrium

Source: Global Rare earth Elements uses in 2019 (Government of Canada, 2021)

Increasing demand of rare earth magnets Forecast NdFeB Magnet Consumption

Permanent magnets: alloys of Neodymium-Iron-Boron (NdFeB)

- Clean energy applications
- Electromobility
- New technologies

Challenges in rare earth magnets: Vulnerable supply of critical metals Technologies

ICT

Challenges in rare earth magnets:

Environmental concern about rare earth mining and manufacturing

Objective of VALOMAG project

Thermal

treatment /

fragmentation

//classification

processes and hydrometallurgi cal route

VALOMAG process chart: from the dismantling of EoL products

Legend:

Partner involved

Materials

Process step

Sourcing of EoL products

1 600kg HDD delivered to CRM

980kg Wind Turbines' magnets sourced by BRGM

Sourcing: SUEZ / BRGM

Thermal treatment: CRM Group

Fragmentation / Classification: BRGM

Recovery: BRGM, CEA, Kolektor

Dismantling process > Thermal treatment

"Design for recycling"

Dismantling process >> Fragmentation and classification

VALOMAG process chart: to the recovery of REE oxides and recycling of

Recovery and recycling routes

From raw materials to functional magnets

Short Loop Recycling with CEA and Kolektor

VALOMAG process chart: supported by LCA and MFA

LCA methodology

 "Compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle"

Research question:

What is the environmental impacts of producing 1kg primary NdFeB magnets

compared to

1kg of equivalent secondary Nd magnets from different VALOMAG recycling routes?

Life cycle assessment framework

LCA results of primary magnets: process contributions to climate change

Flowsheet simulation to LCA

HSC Sim Model

Electroplating Electroplating - Ni anode shode [Value] [Value] Electroplating - Ni choride Electroplating - Ni sulfate Electroplating - heat loss Electroplating - H2SO4 [Value] Electroplating - electrolytes [Value] Electroplating - sludge [Value] Product - coated magnet [Value]

The Activity Browser is an open source graphical user interface designed to increase the productivity when working with the Brightway2 advanced life cycle assessment framework.

Welcome to the Activity Browser !

Activity Browser

Key features:

- . Manage brightway2 projects, databases and activities (increasing your productivity with brightway)
- Calculate fast LCA results (use "calculation setups" to calculate LCA results for several reference flow and impact categories at once)
- Easily plot and export your LCA results (contribution analyses, Monte Carlo simulations)
- · Visualize your results in Sankey diagrams or explore your database with the Graph Explorer

Examples

Flowsheet simulation of partial magnet production route

Relative environmental impacts of simulated recycling technology

Future recycling of rare earth magnets

- RE products call for more attention to "design for recycling".
- Recycling helps
 - strengthen the RE supply chain resilience.
 - lower the potential environmental impacts of primary RE magnet production
- Combining LCA with other methods offers more potential to impact technology development.

THANKS FOR YOUR ATTENTION!

